Adoção de IA na Administração Pública: do tecnicismo à vantagem competitiva e à confiança dos cidadãos

Adopción de IA en la Administración Pública: del tecnicismo a ventaja competitiva y confianza ciudadana

Adopción de IA en la Administración Pública: del tecnicismo a ventaja competitiva y confianza ciudadana

DOI: https://doi.org/10.69733/clad.ryd.n90.a378
Publicado
2025-03-27

Juliano Brito da Justa Neves https://orcid.org/0009-0006-0024-1893
Ana Lúcia da Silva Romão https://orcid.org/0000-0003-2730-4007

Resumen (es)

El estudio de la inteligencia artificial (IA) comenzó en 1950, pero solo en el siglo 21 surgieron equipos específicos para su procesamiento. Inicialmente, la adopción de IA estaba influenciada por factores técnicos, como la complejidad de los algoritmos y la disponibilidad de datos. Sin embargo, el escenario cambió con el lanzamiento de la IA generativa ChatGPT en 2022. Desde entonces, la búsqueda de ventaja competitiva y modernización se ha convertido en el principal motivador para adoptar IA en instituciones públicas y privadas. La rápida popularización de la IA generó un esfuerzo generalizado por destacarse en el mercado. No obstante, el uso creciente de IA ha generado preocupaciones, especialmente en cuanto a la confianza en estas tecnologías, debido a riesgos de rendimiento inesperado que pueden perjudicar la imagen y resultados de las organizaciones. Para las administraciones públicas esto es crítico, ya que las fallas en IA pueden impactar a la sociedad y no son fácilmente corregibles. Este trabajo evalúa los factores que influyen en la adopción de IA en administraciones públicas, desde criterios técnicos iniciales hasta la preocupación por la confianza y regulación de la IA, buscando ofrecer una visión amplia de los desafíos y proponer direcciones para investigación y práctica.

Palabras clave (ES): Factores de influencia, Gobernanza de la era digital, Modelo TOE, Regulación gubernamental, ChatGPT

Resumen (pt_BR)

O estudo da inteligência artificial (IA) começou em 1950, mas, só na segunda década do século 21, surgiram equipamentos específicos para seu processamento. Inicialmente, a adoção de soluções de IA era influenciada por fatores técnicos, como a complexidade de algoritmos e a disponibilidade de dados. Contudo, o cenário mudou com o lançamento da IA generativa ChatGPT em 2022. Desde então, a busca por vantagem competitiva e a necessidade de modernização tornaram-se os principais motivadores para a adoção de IA em instituições públicas e privadas. A rápida popularização da IA levou a um esforço generalizado para se destacar no mercado. No entanto, o aumento do uso de IA trouxe preocupações, especialmente quanto à confiança nessas tecnologias, devido aos riscos de desempenho inesperado que podem prejudicar a imagem e os resultados das organizações. Para as administrações públicas, essa questão é crítica, pois falhas em soluções de IA podem impactar a sociedade e não são facilmente corrigíveis. Este trabalho avalia os fatores que influenciam a adoção de IA em administrações públicas, desde critérios técnicos iniciais até a atual preocupação com a confiança e regulamentação da IA, a fim de oferecer uma visão abrangente dos desafios e propor direções futuras para pesquisa e prática.

Palabras clave (PT): Fatores de influência, Governança da era digital, Modelo TOE, Regulamentação governamental, ChatGPT

Resumen (en)

The study of artificial intelligence (AI) began in 1950, but only in the second decade of the 21st century that specific equipment for its processing emerged. Initially, the adoption of AI solutions was influenced by technical factors, such as the complexity of algorithms and the availability of data. However, the scenario changed with the launch of generative AI ChatGPT in 2022. Since then, the pursuit of competitive advantage and the need for modernization have become the main motivators for the adoption of AI in public and private institutions. The rapid popularization of AI has led to a widespread effort to stand out. However, the increased use of AI has raised concerns, especially regarding trust in these technologies, due to the risks of unexpected performance that can harm the image and results of organizations. For public administrations, this issue is critical, as failures in AI solutions can impact the entire society and are not easily correctable. This work evaluates the factors that influence the adoption of AI in public administrations, from initial technical criteria to the current concern with AI trust and regulation, aiming to provide a comprehensive view of the challenges and propose future directions for research and practice.

Palabras clave (EN): Influencing factors, Digital-Era governance, TOE Model, Government regulation, ChatGPT

Juliano Brito da Justa Neves, University of Lisbon

Juliano é graduado em Engenharia da Computação pela Universidade Federal de São Carlos (2001) e mestre em Ciência da Computação pela Universidade Federal de São Carlos (2005). Possui mestrado em finanças públicas e administração tributária e financeira, com especialização em administração tributária, pelo Instituto de Estudios Fiscales da Uned/Espanha (2021). Possui MBA em gestão de projetos pela Fundação Getúlio Vargas (2011) e MBA em administração pública com ênfase em gestão corporativa pela Fundação Getúlio Vargas (2013). Trabalha como consultor em administração tributária para o Fundo Monetário Internacional desde 2014, tendo já realizado missões de assistência técnica em Guiné-Bissau, Cabo Verde e Nigéria. Também trabalhou como consultor em sistemas de informação para administrações tributárias para o Banco Interamericano de Desenvolvimento em 2020-2021. Iniciou seu doutorado em administração pública, com especialização em administração e políticas públicas, na Universidade de Lisboa em 2023. Atualmente é auditor fiscal da Receita Federal do Brasil, onde já foi Coordenador Geral de Tecnologia e Segurança da Informação e atualmente ocupa o cargo de Subsecretário de Gestão Corporativa.

Ana Lúcia da Silva Romão, University of Lisbon

PhD in Economics, Associate Professor at School of Social and Political Sciences of the University of Lisbon (ISCSP-ULisboa), Researcher at the Centre for Public Administration and Public Policies (CAPP, ISCSP-ULisboa) and at the Centre for Research and Studies in Sociology of the University Institute of Lisbon (CIES-IUL, ISCTE-IUL) and member of the Inequality Observatory (OD). She has been working in the subject of public administration, public finance, strategic industry analysis, inequality and human rights.

Referencias

Agarwal, P. K. (2018). Public Administration Challenges in the World of AI and Bots. Public Administration Review, 78(6), 917-921. https://doi.org/10.1111/puar.12979 DOI: https://doi.org/10.1111/puar.12979

Al Hadwer, A., Tavana, M., Gillis, D., & Rezania, D. (2021). A Systematic Review of Organizational Factors Impacting Cloud-based Technology Adoption Using Technology-Organization-Environment Framework. Internet of Things, 15, 100407. https://doi.org/10.1016/j.iot.2021.100407 DOI: https://doi.org/10.1016/j.iot.2021.100407

Ala’a, A.-M. (2023). Adoption of Artificial Intelligence and Robotics in Organisations: A Systematic Literature Review. International Journal of Business and Technology Management, 5(3), 342- 359. https://doi.org/10.55057/ijbtm.2023.5.3.28 DOI: https://doi.org/10.55057/ijbtm.2023.5.3.28

Androniceanu, A. (2023). The new trends of digital transformation and artificial intelligence in public administration. Administratie si Management Public, 40, 147-155. https://doi.org/10.24818/amp/2023.40-09 DOI: https://doi.org/10.24818/amp/2023.40-09

Anica-Popa, L.-E., Vrîncianu, M., & Petrică Papuc, I.-M. (2023). AI - powered Business Services in the Hyperautomation Era. Proceedings of the International Conference on Business Excellence, 17(1), 1036-1050. https://doi.org/10.2478/picbe-2023-0094 DOI: https://doi.org/10.2478/picbe-2023-0094

Aristovnik, A., Murko, E., & Ravšelj, D. (2022). From Neo-Weberian to Hybrid Governance Models in Public Administration: Differences between State and Local Self-Government. Administrative Sciences, 12(1). https://doi.org/10.3390/admsci12010026 DOI: https://doi.org/10.3390/admsci12010026

Ayinla, B. S., Amoo, O. O., Atadoga, A., Abrahams, T. O., Osasona, F., & Farayola, O. A. (2024). Ethical ai in practice: balancing technological advancements with human values. International Journal of Science and Research Archive, 11, 1311-1326. https://doi.org/10.30574/ijsra.2024.11.1.0218 DOI: https://doi.org/10.30574/ijsra.2024.11.1.0218

Bérubé, M., Giannelia, T., & Vial, G. (2021). Barriers to the Implementation of AI in Organizations: Findings from a Delphi Study. Proceedings of the 54th Hawaii International Conference on System Sciences, 6702-6711. http://hdl.handle.net/10125/71425 DOI: https://doi.org/10.24251/HICSS.2021.805

Białożyt, W. (2017). Digital Era Governance - a new chapter of public management theory and practice. MAZOWSZE Studia Regionalne, (22), 117-129. https://doi.org/10.21858/msr.22.08 DOI: https://doi.org/10.21858/msr.22.08

Bracci, E. (2022). The loopholes of algorithmic public services: an “intelligent” accountability research agenda. Accounting, Auditing & Accountability Journal, 36, 739-763. https://doi.org/10.1108/aaaj-06-2022-5856 DOI: https://doi.org/10.1108/AAAJ-06-2022-5856

Bredt, S. (2019). Artificial Intelligence (AI) in the Financial Sector — Potential and Public Strategies. Frontiers in Artificial Intelligence, 2. https://doi.org/10.3389/frai.2019.00016 DOI: https://doi.org/10.3389/frai.2019.00016

Butt, J. (2024). Analytical study of the world’s first EU artificial intelligence (AI) act, 2024. International Journal of Research Publication and Reviews, 5, 7343-7364. https://doi.org/10.55248/gengpi.5.0324.0914

Cass, S. (2020). Nvidia makes it easy to embed AI: The Jetson nano packs a lot of machine-learning power into DIY projects - [Hands on]. IEEE Spectrum, 57(7), 14-16. https://doi.org/10.1109/mspec.2020.9126102 DOI: https://doi.org/10.1109/MSPEC.2020.9126102

Criado, J. I. (2024). Inteligencia artificial en el sector público latinoamericano. Estudio comparado a partir de la Carta Iberoamericana de Inteligencia Artificial en la Administración Pública. Revista del CLAD Reforma y Democracia, (88), 116-143. https://doi.org/10.69733/clad.ryd.n88.a387 DOI: https://doi.org/10.69733/clad.ryd.n88.a387

Dunleavy, P., & Margetts, H. (2015). Design principles for essentially digital governance. Paper to the 111th Annual Meeting of the American Political Science Association, 3-6 September 2015, American Political Science Association. http://eprints.lse.ac.uk/64125/

Dunleavy, P., & Margetts, H. (2023). Data science, artificial intelligence and the third wave of digital era governance. Public Policy and Administration. https://doi.org/10.1177/09520767231198737 DOI: https://doi.org/10.31219/osf.io/f3rza

Dunleavy, P., Margetts, H., Bastow, S., & Tinkler, J. (2005). New Public Management Is Dead — Long Live Digital-Era Governance. Journal of Public Administration Research and Theory, 16(3), 467- 494. https://doi.org/10.1093/jopart/mui057 DOI: https://doi.org/10.1093/jopart/mui057

Engstrom, D. F., & Haim, A. (2023). Regulating Government AI and the Challenge of Sociotechnical Design. Annual Review of Law and Social Science, 19(1), 277-298. https://doi.org/10.1146/annurev-lawsocsci-120522-091626 DOI: https://doi.org/10.1146/annurev-lawsocsci-120522-091626

Fredriksson, C., Mubarak, F., Tuohimaa, M., & Zhan, M. (2017). Big Data in the Public Sector: A Systematic Literature Review. Scandinavian Journal of Public Administration, 21(3), 39-61. https://doi.org/10.58235/sjpa.v21i3.11563 DOI: https://doi.org/10.58235/sjpa.v21i3.11563

Ghani, E. K., Ariffin, N., & Sukmadilaga, C. (2022). Factors influencing artificial intelligence adoption in publicly listed manufacturing companies: A technology, organisation, and environment approach. International Journal of Applied Economics, Finance and Accounting, 14, 108-117. https://doi.o rg/10.33094/ijaefa.v14i2.667 DOI: https://doi.org/10.33094/ijaefa.v14i2.667

Giest, S. N., & Klievink, B. (2022). More than a digital system: how AI is changing the role of bureaucrats in different organizational contexts. Public Management Review, 1-20. https://doi.org/10.1080/14719037.2022.2095001 DOI: https://doi.org/10.1080/14719037.2022.2095001

Grant, N. (2024, julho 1). Google Rolls Back A.I. Search Feature After Flubs and Flaws. The New York Times. https://www.nytimes.com/2024/06/01/technology/google-ai-overviews-rollback.html

Gualdi, F., & Cordella, A. (2021). Artificial Intelligence and Decision-Making: The question of Accountability. Proceedings of the 54th Hawaii International Conference on System Sciences. https://doi.org/10.24251/hicss.2021.281 DOI: https://doi.org/10.24251/HICSS.2021.281

Habbal, A., Ali, M. K., & Abuzaraida, M. A. (2024). Artificial Intelligence Trust, Risk and Security Management (AI TRiSM): Frameworks, applications, challenges and future research directions. Expert Systems with Applications, 240, 122442. https://doi.org/10.1016/j.eswa.2023.122442 DOI: https://doi.org/10.1016/j.eswa.2023.122442

Hadwick, D., & Lan, S. (2021). Lessons to Be Learned from the Dutch Childcare Allowance Scandal: A Comparative Review of Algorithmic Governance by Tax Administrations in the Netherlands, France and Germany. World Tax Journal, 13(4). https://doi.org/10.59403/27410pa DOI: https://doi.org/10.59403/27410pa

Hamirul, Darmawanto, Elsyra, N., & Syahwami. (2023). The Role of Artificial Intelligence in Government Services: A Systematic Literature Review. Open Access Indonesia Journal of Social Sciences, 6(3), 998-1003. https://doi.org/10.37275/oaijss.v6i3.163 DOI: https://doi.org/10.37275/oaijss.v6i3.163

Hedberg, S. (1998). Is Al going mainstream as last? A look inside Microsoft Research. IEEE Intelligent Systems, 13(2), 21-25. https://doi.org/10.1109/5254.671087 DOI: https://doi.org/10.1109/5254.671087

Holzhausen, M. (2024). Legal accountability and ethical considerations for outcomes driven by artificial intelligence in business operations. Udayana Journal of Law and Culture, 8, 1. https://doi.org/10.24843/ujlc.2024.v08.i01.p01 DOI: https://doi.org/10.24843/UJLC.2024.v08.i01.p01

Horani, O. M., Al-Adwan, A. S., Yaseen, H., Hmoud, H., Al-Rahmi, W. M., & Alkhalifah, A. (2023). The critical determinants impacting artificial intelligence adoption at the organizational level. Information Development. https://doi.org/10.1177/02666669231166889 DOI: https://doi.org/10.1177/02666669231166889

Jacovi, A., Marasović, A., Miller, T., & Goldberg, Y. (2021). Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. https://doi.org/10.1145/3442188.3445923 DOI: https://doi.org/10.1145/3442188.3445923

Katekar, V., & Cheruku, J. K. (2023). Public value-creation through application of artificial intelligence (ai) in covid-19 management: policy lessons from India. Indian Journal of Public Administration, 70, 63-81. https://doi.org/10.1177/00195561231204937 DOI: https://doi.org/10.1177/00195561231204937

Kim, Y., Myeong, S., & Ahn, M. J. (2023). Living labs for ai-enabled public services: functional determinants, user satisfaction, and continued use. Sustainability, 15, 8672. https://doi.org/10.3390/su15118672 DOI: https://doi.org/10.3390/su15118672

Koliba, C., & Spett, E. (2023). What a democratically anchored public administrator needs to understand about artificial intelligence and strategic management. Em Handbook on Strategic Public Management (pp. 178-194). Edward Elgar Publishing. https://doi.org/10.4337/9781789907193.00020 DOI: https://doi.org/10.4337/9781789907193.00020

Madan, R. (2022). Artificial Intelligence Diffusion in Public Administration. Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society. https://doi.org/10.1145/3514094.3539529 DOI: https://doi.org/10.1145/3514094.3539529

Madan, R., & Ashok, M. (2023). AI adoption and diffusion in public administration: A systematic literature review and future research agenda. Government Information Quarterly, 40(1), 101774. https://doi.org/10.1016/j.giq.2022.101774 DOI: https://doi.org/10.1016/j.giq.2022.101774

Margetts, H., & Dunleavy, P. (2013). The second wave of digital-era governance: a quasi-paradigm for government on the Web. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1987), 20120382. https://doi.org/10.1098/rsta.2012.0382 DOI: https://doi.org/10.1098/rsta.2012.0382

McBride, K., van Noordt, C., Misuraca, G., & Hammerschmid, G. (2021). Towards a Systematic Understanding on the Challenges of Procuring Artificial Intelligence in the Public Sector, SocArXiv. https://doi.org/10.31235/osf.io/un649 DOI: https://doi.org/10.31235/osf.io/un649

Meijer, A., Rodríguez Bolívar, M. P., & Gil-Garcia, J. R. (2018). From E-Government to Digital Era Governance and Beyond: Lessons from 15 Years of Research into Information and Communications Technology in the Public Sector. Journal of Public Administration Research and Theory. https://dspace.library.uu.nl/handle/1874/381860

Mennella, C., Maniscalco, U., De Pietro, G., & Esposito, M. (2024). Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon, 10, e26297. https://doi.org/10.1016/j.h eliyon.2024.e26297 DOI: https://doi.org/10.1016/j.heliyon.2024.e26297

Mikalef, P., Lemmer, K., Schaefer, C., Ylinen, M., Fjørtoft, S. O., Torvatn, H. Y., Gupta, M., & Niehaves, B. (2022). Enabling AI capabilities in government agencies: A study of determinants for European municipalities. Government Information Quarterly, 39(4), 101596. https://doi.org/10.1016/j.giq.2021.101596 DOI: https://doi.org/10.1016/j.giq.2021.101596

Mikhaylov, S., Estève, M., & Campion, A. (2018). Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20170357. https://doi.org/10.1098/rsta.2017.0357 DOI: https://doi.org/10.1098/rsta.2017.0357

Neumann, O., Guirguis, K., & Steiner, R. (2024). Exploring artificial intelligence adoption in public organizations: a comparative case study. Public Management Review, 26(1), 114-141. https://doi.org/10.1080/14719037.2022.2048685 DOI: https://doi.org/10.1080/14719037.2022.2048685

Niari, M. (2024). Policy strategies for training public sector executives to develop artificial intelligence skills. Journal of Politics and Ethics in New Technologies and AI, 3, e36596. https://doi.org/10.12681/jpentai.36596 DOI: https://doi.org/10.12681/jpentai.36596

Omrani, N., Rivieccio, G., Fiore, U., Schiavone, F., & Agreda, S. G. (2022). To trust or not to trust? An assessment of trust in AI-based systems: Concerns, ethics and contexts. Technological Forecasting and Social Change, 181, 121763. https://doi.org/10.1016/j.techfore.2022.121763 DOI: https://doi.org/10.1016/j.techfore.2022.121763

Organização para a Cooperação e Desenvolvimento Econômico. (2014). Recommendation of the Council on Digital Government Strategies. OECD-LEGAL-0406. https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0406

Organização para a Cooperação e Desenvolvimento Econômico. (2019a). Artificial Intelligence in Society. OECD Publishing. https://doi.org/10.1787/eedfee77-en DOI: https://doi.org/10.1787/eedfee77-en

Organização para a Cooperação e Desenvolvimento Econômico. (2019b). Recommendation of the Council on Artificial Intelligence. OECD-LEGAL-0449. https://legalinstruments.oecd.org/en/instrument s/OECD-LEGAL-0449

Pandolfini, B. (1997). Kasparov and Deep Blue: The historic chess match between man and machine. Simon; Schuster.

Paschek, D., Mocan, A., Dufour, C.-M., & Draghici, A. (2017). Organizational knowledge management with Big Data. The foundation of using artificial intelligence. Balkan Region Conference on Engineering and Business Education, 2(1), 301-308. https://doi.org/10.1515/cplbu-2017-0039 DOI: https://doi.org/10.1515/cplbu-2017-0039

Pomahač, R. (2024). Artificial Public Administration — Myth or Reality? Acta Universitatis Carolinae Iuridica, 70(2), 133-143. https://doi.org/10.14712/23366478.2024.27 DOI: https://doi.org/10.14712/23366478.2024.27

Pumplun, L., Tauchert, C., & Heidt, M. (2019). A New Organizational Chassis for Artificial Intelligence — Exploring Organizational Readiness Factors. European Conference on Information Systems. https://api.semanticscholar.org/CorpusID:174773897

Regulamento n.º 2024/1689. Regulamento da Inteligência Artificial. Parlamento Europeu e do Conselho. http://data.europa.eu/eli/reg/2024/1689/oj

Reid, L. (2024, maio 30). AI Overviews: About last week. Google. https://blog.google/products/search/ai-overviews-update-may-2024/

Robles, P., & Mallinson, D. J. (2023). Catching up with AI: pushing toward a cohesive governance framework. Politics &; Policy, 51, 355-372. https://doi.org/10.1111/polp.12529 DOI: https://doi.org/10.1111/polp.12529

Schmager, S., Grøder,C. H., Parmiggiani, E., Pappas, I.,& Vassilakopoulou, P. (2024). Exploring citizens’ stances on ai in public services: A social contract perspective. Data & Policy, 6. https://doi.org/10.1017/dap.2024.13 DOI: https://doi.org/10.1017/dap.2024.13

Sigfrids, A., Nieminen, M., Leikas, J., & Pikkuaho, P. (2022). How should public administrations foster the ethical development and use of artificial intelligence? A review of proposals for developing governance of ai. Frontiers in Human Dynamics, 4. https://doi.org/10.3389/fhumd.2022.858108 DOI: https://doi.org/10.3389/fhumd.2022.858108

Sousa, W. G. d., Melo, E. R. P. d., Bermejo, P. H. D. S., Farias, R. A. S., & Gomes, A. O. (2019). How and where is artificial intelligence in the public sector going? A literature review and research agenda. Government Information Quarterly, 36(4). https://doi.org/10.1016/j.giq.2019.07.004 DOI: https://doi.org/10.1016/j.giq.2019.07.004

Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of artificial intelligence in the public sector: evidence from public healthcare. Government Information Quarterly, 36, 368-383. https://doi.org/10.1016/j.giq.2018.09.008 DOI: https://doi.org/10.1016/j.giq.2018.09.008

Tangi, L., van Noordt, C., & Rodriguez Müller, A. P. (2023). The challenges of AI implementation in the public sector. An in-depth case studies analysis. Proceedings of the 24th Annual International Conference on Digital Government Research. https://doi.org/10.1145/3598469.3598516 DOI: https://doi.org/10.1145/3598469.3598516

Tornatzky, L., & Fleischer, M. (1990). The Processes of Technological Innovation. Lexington Books.

Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, 59(236), 433-460. https://doi.org/10.1093/mind/lix.236.433 DOI: https://doi.org/10.1093/mind/LIX.236.433

Van Noordt, C. (2022). Conceptual challenges of researching Artificial Intelligence in public administrations. DG.O 2022: The 23rd Annual International Conference on Digital Government Research. https://doi.org/10.1145/3543434.3543441 DOI: https://doi.org/10.1145/3543434.3543441

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Em I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 5998-6008). Curran Associates Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Welham, D. (2008). AI in training (1980-2000): Foundation for the future or misplaced optimism? British Journal of Educational Technology, 39(2), 287-296. https://doi.org/10.1111/j.1467-8535.2008.0 0818.x DOI: https://doi.org/10.1111/j.1467-8535.2008.00818.x

Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2018). Artificial Intelligence and the Public Sector — Applications and Challenges. International Journal of Public Administration, 42(7), 596-615. https://doi.org/10.1080/01900692.2018.1498103 DOI: https://doi.org/10.1080/01900692.2018.1498103

Włodyka, E. M. (2024). Artificial intelligence as a supporting tool for local government decision-making in public safety. Przegląd Nauk O Obronności, 80-91. https://doi.org/10.37055/pno/185616 DOI: https://doi.org/10.37055/pno/185616

Wong, J. W., & Yap, K. H. A. (2024). Factors influencing the adoption of artificial intelligence in accounting among micro, small medium enterprises (MSMES). Quantum Journal of Social Sciences and Humanities, 5, 16-28. https://doi.org/10.55197/qjssh.v5i1.323 DOI: https://doi.org/10.55197/qjssh.v5i1.323

Yiğitcanlar, T., Agdas, D., & Degirmenci, K. (2022). Artificial intelligence in local governments: perceptions of city managers on prospects, constraints and choices. AI & Society, 38, 1135-1150. https://doi.org/10.1007/s00146-022-01450-x DOI: https://doi.org/10.1007/s00146-022-01450-x

Yuan, H. (2023). Current perspective on artificial intelligence, machine learning and deep learning. Applied and Computational Engineering, 19, 116-122. https://doi.org/10.54254/2755-2721/19/20231019 DOI: https://doi.org/10.54254/2755-2721/19/20231019

Zuiderwijk, A., Chen, Y.-C., & Salem, F. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, 38(3), 101577. https://doi.org/10.1016/j.giq.2021.101577 DOI: https://doi.org/10.1016/j.giq.2021.101577

Dimensions

PlumX

Descargas

Los datos de descarga aún no están disponibles.

Visitas

38

Cómo citar

Brito da Justa Neves, J., & da Silva Romão, A. L. (2025). Adopción de IA en la Administración Pública: del tecnicismo a ventaja competitiva y confianza ciudadana. Revista Del CLAD Reforma Y Democracia, 90, 25-53. https://doi.org/10.69733/clad.ryd.n90.a378

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.